题目内容
13.甲、乙来年哥哥玩一转盘游戏(转盘如图“C为弧AB的中点”)指针指向圆弧AC时甲胜,指向圆弧BC时乙胜.后来转盘损坏如图,甲提议连AD取AD中点E,若指针指向线段AE甲胜,指向线段ED乙胜.然后继续游戏,此时乙的赢面更大.(填甲、乙)分析 看转盘的指针指向线段AE和 指向线段ED区域占整体的多少,再进行比较即可得出答案
解答 解:在直角三角形AOD中,∠AOE=30°,∠DOE=60°,
指针指向线段AE的概率是:$\frac{30°}{90°}=\frac{1}{3}$,
指针指向线段ED的概率是:$\frac{6{0}^{°}}{90°}=\frac{2}{3}$,
所以乙胜的概率大;
故答案为:乙.
点评 本题考查的是几何概型概率应用;关键是分别求出两人获胜的概率.
练习册系列答案
相关题目
3.若某公司从四位大学毕业生甲、乙、丙、丁中录用两人,这四人被录用的机会均等,则甲被录用的概率为( )
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
4.在研究高血压与患心脏病的关系调查中,调查了有高血压者30人,其中有20人患心脏病;调查的80个不高血压者中有30人患心脏病,
(1)根据以上数据建立一个2×2的列联表;
(2)若认为“高血压与患心脏病有关”,则出错的概率会是多少?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$;n=a+b+c+d
(1)根据以上数据建立一个2×2的列联表;
(2)若认为“高血压与患心脏病有关”,则出错的概率会是多少?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$;n=a+b+c+d
P(K2>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
8.运行如图程序,若输入的是-2,则输出的结果是( )
A. | 4 | B. | 2 | C. | -4 | D. | -2 |
5.已知命题p,q,那么“p∧q为真命题”是“p∨q为真命题”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |