ÌâÄ¿ÄÚÈÝ
4£®4ÔÂ23ÈËÊÇ¡°ÊÀ½ç¶ÁÊéÈÕ¡±£¬Ä³ÖÐѧÔÚ´ËÆڼ俪չÁËһϵÁеĶÁÊé½ÌÓý»î¶¯£¬ÎªÁ˽ⱾУѧÉú¿ÎÍâÔĶÁÇé¿ö£¬Ñ§Ð£Ëæ»ú³éÈ¡ÁË100ÃûѧÉú¶ÔÆä¿ÎÍâÔĶÁʱ¼ä½øÐе÷²é£¬ÏÂÃæÊǸù¾Ýµ÷²é½á¹û»æÖƵÄѧÉúÈÕ¾ù¿ÎÍâÔĶÁʱ¼ä£¨µ¥Î»£º·ÖÖÓ£©µÄƵÂÊ·Ö²¼Ö±·½Í¼£¬Èô½«ÈÕ¾ù¿ÎÍâÔĶÁʱ¼ä²»µÍÓÚ60·ÖÖÓµÄѧÉú³ÆΪ¡°¶ÁÊéÃÕ¡±£¬µÍÓÚ60·ÖÖÓµÄѧÉú³ÆΪ¡°·Ç¶ÁÊéÃÕ¡±£¨1£©¸ù¾ÝÒÑÖªÌõ¼þÍê³ÉÏÂÃæ2¡Á2µÄÁÐÁª±í£¬²¢¾Ý´ËÅжÏÊÇ·ñÓÐ99%µÄ°ÑÎÕÈÏΪ¡°¶ÁÊéÃÕ¡±ÓëÐÔ±ðÓйأ¿
·Ç¶ÁÊéÃÔ | ¶ÁÊéÃÔ | ºÏ¼Æ | |
ÄÐ | 15 | ||
Å® | 45 | ||
ºÏ¼Æ |
¸½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$n=a+b+c+d
P£¨K2¡Ýk0£© | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
·ÖÎö £¨1£©ÀûÓÃƵÂÊ·Ö²¼Ö±·½Í¼£¬Ö±½Ó¼ÆËãÌîд±í¸ñ£¬È»ºóÀûÓøöÊýÇó½âK2£¬Åжϼ´¿É£®
£¨2£©Çó³ö¸ÅÂʵķֲ¼ÁУ¬È»ºóÀûÓ󬼸ºÎ·Ö²¼Çó½âÆÚÍûÓë·½²î¼´¿É£®
½â´ð ½â£º£¨1£©Íê³ÉÏÂÃæµÄ2¡Á2ÁÐÁª±íÈçÏÂ
·Ç¶ÁÊéÃÔ | ¶ÁÊéÃÔ | ºÏ¼Æ | |
ÄÐ | 40 | 15 | 55 |
Å® | 20 | 25 | 45 |
ºÏ¼Æ | 60 | 40 | 100 |
${K}^{2}=\frac{100{£¨40¡Á25-15¡Á20£©}^{2}}{60¡Á40¡Á55¡Á45}$¡Ö8.249
VB8.249£¾6.635£¬¹ÊÓÐ99%µÄ°ÑÎÕÈÏΪ¡°¶ÁÊéÃÔ¡±ÓëÐÔ±ðÓйء£¨6·Ö£©
£¨2£©ÊÓƵÂÊΪ¸ÅÂÊ£®Ôò´Ó¸ÃУѧÉúÖÐÈÎÒâ³éÈ¡1ÃûѧÉúǡΪ¶ÁÊéÃԵĸÅÂÊΪ$\frac{2}{5}$£®ÓÉÌâÒâ¿ÉÖªX¡«B£¨3£¬$\frac{2}{5}$£©£¬P£¨x=i£©=${C}_{3}^{i}£¨\frac{2}{5}£©^{i}£¨\frac{3}{5}£©^{3-i}$ £¨i=0£¬1£¬2£¬3£©¡£¨8·Ö£©
´Ó¶ø·Ö²¼ÁÐΪ
X | 0 | 1 | 2 | 3 |
P | $\frac{27}{125}$ | $\frac{54}{125}$ | $\frac{36}{125}$ | $\frac{8}{125}$ |
E£¨x£©=np=$\frac{6}{5}$£¬D£¨x£©=np£¨1-p£©=$\frac{18}{25}$ ¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éƵÂÊ·Ö²¼Ö±·½Í¼µÄÓ¦Ó㬶ÔÁ¢¼ìÑéÒÔ¼°¶þÏî·Ö²¼µÄÆÚÍûÓë·½²îµÄÇ󷨣¬·Ö²¼ÁеÄÇ󷨣¬¿¼²é¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®Éèa=sin145¡ã£¬b=cos52¡ã£¬c=tan47¡ã£¬Ôòa£¬b£¬cµÄ´óС¹ØϵÊÇ£¨¡¡¡¡£©
A£® | a£¼b£¼c | B£® | c£¼b£¼a | C£® | b£¼a£¼c | D£® | a£¼c£¼b |
15£®Ò»Æû³µ4SµêнøA£¬B£¬CÈýÀà½Î³µ£¬Ã¿Àà½Î³µµÄÊýÁ¿ÈçÏÂ±í£º
ͬһÀà½Î³µÍêÈ«Ïàͬ£¬ÏÖ×¼±¸ÌáÈ¡Ò»²¿·Ö³µÈ¥²Î¼Ó³µÕ¹£®
£¨¢ñ£©´ÓµêÖÐÒ»´ÎËæ»úÌáÈ¡2Á¾³µ£¬ÇóÌáÈ¡µÄÁ½Á¾³µÎªÍ¬Ò»ÀàÐͳµµÄ¸ÅÂÊ£»
£¨¢ò£©ÈôÒ»´ÎÐÔÌáÈ¡4Á¾³µ£¬ÆäÖÐA£¬B£¬CÈýÖÖÐͺŵijµÁ¾Êý·Ö±ð¼ÇΪa£¬b£¬c£¬¼Ç¦ÎΪa£¬b£¬cµÄ×î´óÖµ£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
Àà±ð | A | B | C |
ÊýÁ¿ | 4 | 3 | 2 |
£¨¢ñ£©´ÓµêÖÐÒ»´ÎËæ»úÌáÈ¡2Á¾³µ£¬ÇóÌáÈ¡µÄÁ½Á¾³µÎªÍ¬Ò»ÀàÐͳµµÄ¸ÅÂÊ£»
£¨¢ò£©ÈôÒ»´ÎÐÔÌáÈ¡4Á¾³µ£¬ÆäÖÐA£¬B£¬CÈýÖÖÐͺŵijµÁ¾Êý·Ö±ð¼ÇΪa£¬b£¬c£¬¼Ç¦ÎΪa£¬b£¬cµÄ×î´óÖµ£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
12£®ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Èô$\frac{S_4}{a_4}=\frac{S_2}{a_2}$£¬Ôò$\frac{{{S_{2015}}}}{S_1}$µÈÓÚ£¨¡¡¡¡£©
A£® | 2015 | B£® | -2015 | C£® | 1 | D£® | -1 |
9£®ÊýÁÐ{an}ΪµÈ²îÊýÁУ¬ÇÒa1+a7+a13=4£¬Ôòa2+a12µÄֵΪ£¨¡¡¡¡£©
A£® | $\frac{4}{3}$ | B£® | $\frac{8}{3}$ | C£® | 2 | D£® | 4 |
13£®º¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼$\frac{¦Ð}{2}$£©µÄ²¿·ÖͼÏó£¬ÈçͼËùʾ£¬Ôò½«y=f£¨x£©µÄͼÏóÏòÓÒƽÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»ºó£¬µÃµ½µÄͼÏó½âÎöʽΪ£¨¡¡¡¡£©
A£® | y=sin£¨2x-$\frac{¦Ð}{6}$£© | B£® | y=cos2x | C£® | y=sin£¨2x+$\frac{5¦Ð}{6}$£© | D£® | y=-cos2x |