ÌâÄ¿ÄÚÈÝ

14£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2cos¦Á}\\{y=sin¦Á}\end{array}}\right.£¨¦ÁΪ²ÎÊý£©$£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\frac{3}{5}t}\\{y=4+\frac{4}{5}t}\end{array}£¨tΪ²ÎÊý£©}\right.$£®ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌºÍÖ±ÏßlµÄ¼«×ø±ê·½³Ì£»
£¨2£©ÈôP£¨x£¬y£©ÎªÇúÏßCÉϵĶ¯µã£¬ÇóµãPµ½Ö±ÏßlµÄ¾àÀëdµÄ×î´óÖµºÍ×îСֵ£®

·ÖÎö £¨1£©ÓÉÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2cos¦Á}\\{y=sin¦Á}\end{array}}\right.£¨¦ÁΪ²ÎÊý£©$£¬ÀûÓÃcos2¦Á+sin2¦Á=1¿ÉµÃÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£®ÓÉÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\frac{3}{5}t}\\{y=4+\frac{4}{5}t}\end{array}£¨tΪ²ÎÊý£©}\right.$£®ÏûÈ¥²ÎÊýt¿ÉµÃ£ºÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£¬°Ñ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$´úÈë¿ÉµÃ¼«×ø±ê·½³Ì£®
£¨2£©ÉèP£¨2cos¦Á£¬sin¦Á£©£¬Ö±ÏßlΪ4x-3y+12=0£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¡¢Èý½Çº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÓÉÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2cos¦Á}\\{y=sin¦Á}\end{array}}\right.£¨¦ÁΪ²ÎÊý£©$£¬ÀûÓÃcos2¦Á+sin2¦Á=1¿ÉµÃ£ºÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪ$\frac{x^2}{4}+{y^2}=1$£®
ÓÉÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=\frac{3}{5}t}\\{y=4+\frac{4}{5}t}\end{array}£¨tΪ²ÎÊý£©}\right.$£®ÏûÈ¥²ÎÊýt¿ÉµÃ£ºÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪ4x-3y+12=0£¬
°Ñ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$´úÈë¿ÉµÃ£º¼«×ø±ê·½³ÌΪ4¦Ñcos¦È-3¦Ñsin¦È+12=0£®
£¨2£©ÉèP£¨2cos¦Á£¬sin¦Á£©£¬Ö±ÏßlΪ4x-3y+12=0£¬
Ôò$d=\frac{{|{8cos¦Á-3sin¦Á+12}|}}{5}=\frac{{|{\sqrt{73}cos£¨¦Á+?£©+12}|}}{5}$£¬
¡à×î´óֵΪ$\frac{{12+\sqrt{73}}}{5}$£¬×îСֵΪ$\frac{{12-\sqrt{73}}}{5}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³Ì»¥»¯¡¢ÍÖÔ²µÄ²ÎÊý·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Èý½Çº¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø