题目内容

16.已知PA⊥平面ABCD,CD⊥AD,BA⊥AD,CD=AD=AP=4,AB=2.
(1)求证:CD⊥平面ADP;
(2)若M为线段PC上的点,当BM⊥PC时,求三棱锥B-APM的体积.

分析 (1)利用平面与平面垂直的判定定理证明平面ADP⊥平面ABCD,然后利用性质定理证明CD⊥平面ADP.
(2)取CD的中点F,连接BF,求得BP,所以BC=BP.在平面PCD中过点M作MQ∥DC交DP于Q,连接QB,QA,
利用等体积法转化求解即可.

解答 (1)证明:因为PA⊥平面ABCD,PA?平面ADP,
所以平面ADP⊥平面ABCD.…(2分)
又因为平面ADP∩平面ABCD=AD,CD⊥AD,
所以CD⊥平面ADP.…(4分)
(2)取CD的中点F,连接BF,
在梯形ABCD中,因为CD=4,AB=2,
所以BF⊥CD.
又BF=AD=4,所以BC=$2\sqrt{5}$.
在△ABP中,由勾股定理求得BP=$2\sqrt{5}$.
所以BC=BP.…(7分)
又知点M在线段PC上,且BM⊥PC,
所以点M为PC的中点.…(9分)
在平面PCD中过点M作MQ∥DC交DP于Q,连接QB,QA,
 则V三棱锥B-APM=V三棱锥M-APB=V三棱锥Q-APM=V三棱锥B-APQ=$\frac{1}{3}×(\frac{1}{2}×4×2)×2$=$\frac{8}{3}$…(12分)

点评 本题考查平面与平面垂直的判定定理以及性质定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力转化思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网