题目内容
一个杜会调查机构就某地居民的月收人调查了10000人,并根据所得数据画出样本的频率分布直方图(如下图).为了分析居民的收人与年龄、学历、职业等方面的关系,按下图横轴表示的月收人情况分成六层,再从这10000人中用分层抽样的方法抽出100人作进一步调查,则在[2500,3000)(元)月收人层中应抽出的人数为________;
某几何体的三视图如下图所示,则该几何体的表面积为
A.
(5+)π
B.
(20+2)π
C.
(10+)π
D.
(5+2)π
若数列{an}的前n项和为Sn,则下列命题:
(1)若数列{an}是递增数列,则数列{Sn}也是递增数列;
(2)数列{Sn}是递增数列的充要条件是数列{an}的各项均为正数;
(3)若{an}是等差数列(公差d≠0),则S1·S2……Sk=0的充要条件是a1·a2……ak=0.
(4)若{an}是等比数列,则S1·S2……Sk=0(k≥2,k∈N)的充要条件是an+an+1=0.
其中,正确命题的个数是
0个
1个
2个
3个
给定椭圆C:+=1(a>b>0).称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.
(Ⅰ)求椭圆C的方程和其“准圆”方程;
(Ⅱ)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直?并说明理由.
某产品的广告费用x与销售额y的统计数据如下表
根据上表可得回归方程=x+中的为9.4,据此模型预报广告费用为6万元时销售额为
63.6万元
65.5万元
67.7万元
72.0万元
设△ABC的内角A,B,C所对的边长分别为a,b,c,且(2b-c)cosA=acosC.
(Ⅰ)求角A的大小;
(Ⅱ)若角B=,BC边上的中线AM的长为,求△ABC的面积.
如图给出了一个程序框图,其作用是输入x的值,输出相应的y值.若要使输入的x值与输出的y值相等,则这样的x值有( )个.
1
2
3
4
在等腰梯形ABCD中,AB=3,AD=BC=2,CD=1,E为AB上的点且AE=1,将△AED沿DE折起到A1ED的位置,使得二面角A1-CD-E的平面角为30°.
(1)求证:DE⊥A1B
(2)求二面角B-A1C-D的余弦值.
已知实数x∈[3,17],执行如图所示的程序框图,则输出的x不小于87的概率为________.