题目内容

给定椭圆C:=1(a>b>0).称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为

(Ⅰ)求椭圆C的方程和其“准圆”方程;

(Ⅱ)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1l2,使得l1l2与椭圆C都只有一个交点,试判断l1l2是否垂直?并说明理由.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网