ÌâÄ¿ÄÚÈÝ

13£®ÒÑÖªº¯Êýf£¨x£©=asin$\frac{x}{2}$+cos$\frac{x}{2}$£¨a¡ÊR£©£¬ÇÒf£¨x£©¡Üf£¨$\frac{2¦Ð}{3}$£©ºã³ÉÁ¢£®¸ø³öÏÂÁнáÂÛ£º
¢Ùº¯Êýy=f£¨x£©ÔÚ[0£¬$\frac{2¦Ð}{3}$]Éϵ¥µ÷µÝÔö£»
¢Ú½«º¯Êýy=f£¨x£©µÄͼÏóÏò×óƽÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»£¬ËùµÃͼÏó¶ÔÓ¦µÄº¯ÊýΪżº¯Êý£»
¢ÛÈôk¡Ý2£¬Ôòº¯Êýg£¨x£©=kx-f£¨2x-$\frac{¦Ð}{3}$£©ÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£®
ÆäÖÐÕýÈ·µÄ½áÂÛÊÇ¢Ù¢Û£®£¨Ð´³öËùÓÐÕýÈ·½áÂÛµÄÐòºÅ£©

·ÖÎö ¢Ù$f£¨\frac{2¦Ð}{3}£©$=$\frac{\sqrt{3}}{2}$a+$\frac{1}{2}$£¬ÓÉf£¨x£©¡Üf£¨$\frac{2¦Ð}{3}$£©ºã³ÉÁ¢£¬¿ÉµÃa£¾0£¬$\sqrt{{a}^{2}+1}$=$\frac{\sqrt{3}}{2}$a+$\frac{1}{2}$£¬½âµÃa£¬¿ÉµÃf£¨x£©£¬ÔÙÀûÓÃÕýÏÒº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³öµ¥µ÷ÐÔ£»
¢Ú½«º¯Êýy=f£¨x£©µÄͼÏóÏò×óƽÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»£¬¿ÉµÃy=$2sin[\frac{1}{2}£¨x+\frac{¦Ð}{3}£©+\frac{¦Ð}{6}]$=$2sin£¨\frac{1}{2}x+\frac{¦Ð}{3}£©$£¬¼´¿ÉÅжϳöͼÏóµÄÆæżÐÔ£»
¢ÛÀûÓÃÆ溯ÊýµÄ¶¨Òå¿ÉµÃ£ºº¯Êýf£¨x£©ÊÇÆ溯Êý£®f£¨0£©=0£®Èôk¡Ý2£¬µ±x£¾0ʱ£¬º¯Êýg£¨x£©=kx-f£¨2x-$\frac{¦Ð}{3}$£©¡Ý2x-2sinx=2£¨x-sinx£©£¾0£¬ÎÞÁãµã£»Í¬Àíx£¼0ʱ£¬ÎÞÁãµã£¬¼´¿ÉÅжϳö£®

½â´ð ½â£º¢Ù$f£¨\frac{2¦Ð}{3}£©$=a$sin\frac{¦Ð}{3}$+$cos\frac{¦Ð}{3}$=$\frac{\sqrt{3}}{2}$a+$\frac{1}{2}$£¬¡ßf£¨x£©¡Üf£¨$\frac{2¦Ð}{3}$£©ºã³ÉÁ¢£¬¡àa£¾0£¬$\sqrt{{a}^{2}+1}$=$\frac{\sqrt{3}}{2}$a+$\frac{1}{2}$£¬½âµÃa=$\sqrt{3}$£®
¡àf£¨x£©=$\sqrt{3}sin\frac{x}{2}+cos\frac{x}{2}$=$2sin£¨\frac{x}{2}+\frac{¦Ð}{6}£©$£¬ÓÉx¡Ê[0£¬$\frac{2¦Ð}{3}$]£¬¿ÉµÃ$£¨\frac{x}{2}+\frac{¦Ð}{6}£©$¡Ê$[\frac{¦Ð}{6}£¬\frac{¦Ð}{2}]$£¬¡àº¯Êýy=f£¨x£©ÔÚ[0£¬$\frac{2¦Ð}{3}$]Éϵ¥µ÷µÝÔö£¬¢ÙÕýÈ·£»
¢Ú½«º¯Êýy=f£¨x£©µÄͼÏóÏò×óƽÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»£¬¿ÉµÃy=$2sin[\frac{1}{2}£¨x+\frac{¦Ð}{3}£©+\frac{¦Ð}{6}]$=$2sin£¨\frac{1}{2}x+\frac{¦Ð}{3}£©$£¬ËùµÃͼÏó¶ÔÓ¦µÄº¯Êý²»ÊÇżº¯Êý£¬¢Ú²»ÕýÈ·£»
¢Ûf£¨-x£©=-f£¨x£©£¬¡àº¯Êýf£¨x£©ÊÇÆ溯Êý£®f£¨0£©=0£®Èôk¡Ý2£¬Ôòµ±x£¾0ʱ£¬º¯Êýg£¨x£©=kx-f£¨2x-$\frac{¦Ð}{3}$£©=kx-2sinx¡Ý2x-2sinx=2£¨x-sinx£©£¾0£¬ÎÞÁãµã£»Í¬Àíx£¼0ʱ£¬ÎÞÁãµã£®×ÛÉϿɵ㺺¯Êýf£¨x£©ÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£¬¹Ê¢Û¢ÛÕýÈ·£®
Òò´ËÖ»ÓУº¢Ù¢ÛÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Û£®

µãÆÀ ±¾Ì⿼²éÁ˼òÒ×Âß¼­µÄÅж¨·½·¨¡¢Èý½Çº¯ÊýµÄͼÏóÓëÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø