题目内容
5.如图所示的茎叶图(图一)为高三某班50名学生的化学考试成绩,图(二)的算法框图中输入的ai为茎叶图中的学生成绩,则输出的m,n分别是( )A. | m=38,n=12 | B. | m=26,n=12 | C. | m=12,n=12 | D. | m=24,n=10 |
分析 算法的功能是计算学生在50名学生的化学考试成绩中,成绩大于等于80的人数,和成绩小于80且大于等于60的人数,根据茎叶图可得
解答 解:由程序框图知:算法的功能是计算学生在50名学生的化学考试成绩中,成绩大于等于80的人数,和成绩小于80且大于等于60的人数,
由茎叶图得,在50名学生的成绩中,成绩大于等于80的人数有80,80,81,84,84,85,86,89,90,91,96,98,共12人,故n=12,
由茎叶图得,在50名学生的成绩中,成绩小于60的人数有43,46,47,48,50,51,52,53,53,56,58,59,共12人,
则在50名学生的成绩中,成绩小于80且大于等于60的人数有50-12-12=26,故m=26
故选:B.
点评 本题借助茎叶图考查了循环结构的程序框图,根据框图的流程判断算法的功能是关键
练习册系列答案
相关题目
15.已知集合M={x|x≥2},N={0,1,2,3},则M∩N等于( )
A. | {3} | B. | {2,3} | C. | {x|x≥2} | D. | {0,1,2,3} |
20.某校为了丰富学生的课余生活,决定在每周的星期二、星期四的课外活动期间同时开设先秦文化、趣味数学、国学和网络技术讲座,每位同学参加每个讲座的可能性相同.若参加讲座的人数达到预先设定的人数时称为满座,否则称为不满座,统计数据表明,各讲座的概率如表:
根据上表:
(1)求趣味数学讲座在星期二、星期四都不满座的概率;
(2)设星期四各讲座满座的科目为ξ,求随机变量ξ的分布列和数学期望.
星期 | 先秦文化 | 趣味数学 | 国学 | 网络技术 |
星期二 | $\frac{1}{2}$ | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{2}{3}$ |
星期四 | $\frac{2}{3}$ | $\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{1}{2}$ |
(1)求趣味数学讲座在星期二、星期四都不满座的概率;
(2)设星期四各讲座满座的科目为ξ,求随机变量ξ的分布列和数学期望.
14.已知i是虚数单位,则${({\frac{1-i}{1+i}})^3}$=( )
A. | 1 | B. | i | C. | -i | D. | -1 |