题目内容
(2011•山东)等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:bn=an+(﹣1)nlnan,求数列{bn}的前2n项和S2n.
| 第一列 | 第二列 | 第三列 |
第一行 | 3 | 2 | 10 |
第二行 | 6 | 4 | 14 |
第三行 | 9 | 8 | 18 |
(2)若数列{bn}满足:bn=an+(﹣1)nlnan,求数列{bn}的前2n项和S2n.
(1)an=2•3n﹣1,n∈N*.
(2)S2n=32n+nln3﹣1
(2)S2n=32n+nln3﹣1
(1)当a1=3时,不符合题意;
当a1=2时,当且仅当a2=6,a3=18时符合题意;
当a1=10时,不符合题意;
所以a1=2,a2=6,a3=18,
∴公比为q=3,
故:an=2•3n﹣1,n∈N*.
(2)∵bn=an+(﹣1)nlnan
=2•3n﹣1+(﹣1)nln(2•3n﹣1)
=2•3n﹣1+(﹣1)n[ln2+(n﹣1)ln3]
=2•3n﹣1+(﹣1)n(ln2﹣ln3)+(﹣1)nnln3
∴S2n=b1+b2+…+b2n
=2(1+3+…+32n﹣1)+[﹣1+1﹣1+…+(﹣1)2n]•(ln2﹣ln3)+[﹣1+2﹣3+…+(﹣1)2n2n]ln3
=
=32n+nln3﹣1
∴数列{bn}的前2n项和S2n=32n+nln3﹣1.
当a1=2时,当且仅当a2=6,a3=18时符合题意;
当a1=10时,不符合题意;
所以a1=2,a2=6,a3=18,
∴公比为q=3,
故:an=2•3n﹣1,n∈N*.
(2)∵bn=an+(﹣1)nlnan
=2•3n﹣1+(﹣1)nln(2•3n﹣1)
=2•3n﹣1+(﹣1)n[ln2+(n﹣1)ln3]
=2•3n﹣1+(﹣1)n(ln2﹣ln3)+(﹣1)nnln3
∴S2n=b1+b2+…+b2n
=2(1+3+…+32n﹣1)+[﹣1+1﹣1+…+(﹣1)2n]•(ln2﹣ln3)+[﹣1+2﹣3+…+(﹣1)2n2n]ln3
=
=32n+nln3﹣1
∴数列{bn}的前2n项和S2n=32n+nln3﹣1.
练习册系列答案
相关题目