题目内容
【题目】已知点,圆
(1)过点的圆的切线只有一条,求的值及切线方程;
(2)若过点且在两坐标轴上截距相等的直线被圆截得的弦长为,求的值.
【答案】(1) 时,切线方程为x+y-4=0,) 时,切线方程为x-y-4=0(2)
【解析】试题分析:若过点A的圆的切线只有一条,说明点在圆上,点A的坐标满足圆的方程求出;由于直线在两坐标轴上的截距相等,所以可用直线的截距式巧设直线的方程;求圆的弦长,一般先求出圆心到直线的距离,然后利用勾股定理计算弦长,利用待定系数法,列方程,解方程组求出.
试题解析:(1)由于过点A的圆的切线只有一条,则点A在圆上,故12+a2=4,∴a=±.
当a=时,A(1, ),切线方程为x+y-4=0;
当a=-时,A(1,- ),切线方程为x-y-4=0,
∴a=时,切线方程为x+y-4=0,
a=-时,切线方程为x-y-4=0.
(2)设直线方程为 x+y=b,
由于直线过点A,∴1+a=b,a=b-1.
又圆心到直线的距离d=,
∴()2+()2=4.
∴b=± .∴a=±-1.
练习册系列答案
相关题目