题目内容

【题目】一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为( )
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣

【答案】D
【解析】解:点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),

故可设反射光线所在直线的方程为:y+3=k(x﹣2),化为kx﹣y﹣2k﹣3=0.

∵反射光线与圆(x+3)2+(y﹣2)2=1相切,

∴圆心(﹣3,2)到直线的距离d= =1,

化为24k2+50k+24=0,

∴k= 或﹣

所以答案是:D.

【考点精析】认真审题,首先需要了解直线的斜率(一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网