题目内容
设f(x)=
,则f(2007)+f(2008)+f(2009)+f(2010)=______.
|
由题意可知:f(2007)=sin(
+
)=sin(
+
)=-cos
=-
,
f(2008)=f(2003)=sin(
+
)=sin(
+
)=-cos
=-
,
f(2009)=f(2004)=sin(
+
)=sin
=
,
f(2010)=f(2005)=sin(
+
)=sin(
+
)=cos
=
f(2007)+f(2008)+f(2009)+f(2010)=0.
故答案为:0.
2007π |
2 |
π |
4 |
3π |
2 |
π |
4 |
π |
4 |
| ||
2 |
f(2008)=f(2003)=sin(
2003π |
2 |
π |
4 |
3π |
2 |
π |
4 |
π |
4 |
| ||
2 |
f(2009)=f(2004)=sin(
2004π |
2 |
π |
4 |
π |
4 |
| ||
2 |
f(2010)=f(2005)=sin(
2005π |
2 |
π |
4 |
π |
2 |
π |
4 |
π |
4 |
| ||
2 |
f(2007)+f(2008)+f(2009)+f(2010)=0.
故答案为:0.
练习册系列答案
相关题目