题目内容
12.已知数列{an}的满足${a_{n+1}}=\frac{{3{a_n}+\sqrt{3}}}{{3-\sqrt{3}{a_n}}}$,${a_1}=3\sqrt{3}$,则a2015=$\frac{{\sqrt{3}}}{5}$.分析 由${a_{n+1}}=\frac{{3{a_n}+\sqrt{3}}}{{3-\sqrt{3}{a_n}}}$,${a_1}=3\sqrt{3}$可知数列{an}的周期为6,从而解得.
解答 解:∵${a_{n+1}}=\frac{{3{a_n}+\sqrt{3}}}{{3-\sqrt{3}{a_n}}}$,${a_1}=3\sqrt{3}$,
∴a2=$\frac{3{a}_{1}+\sqrt{3}}{3-\sqrt{3}{a}_{1}}$=-$\frac{5}{3}$$\sqrt{3}$,
a3=$\frac{3{a}_{2}+\sqrt{3}}{3-\sqrt{3}{a}_{2}}$=-$\frac{1}{2}$$\sqrt{3}$,
a4=$\frac{3{a}_{3}+\sqrt{3}}{3-\sqrt{3}{a}_{3}}$=-$\frac{1}{9}$$\sqrt{3}$,
a5=$\frac{3{a}_{4}+\sqrt{3}}{3-\sqrt{3}{a}_{4}}$=$\frac{1}{5}$$\sqrt{3}$,
a6=$\frac{3{a}_{5}+\sqrt{3}}{3-\sqrt{3}{a}_{5}}$=$\frac{2}{3}$$\sqrt{3}$,
a7=$\frac{3×\frac{2}{3}\sqrt{3}+\sqrt{3}}{3-\sqrt{3}•\frac{2}{3}\sqrt{3}}$=3$\sqrt{3}$,
故数列{an}的周期为6,
而2015=335×6+5,
故a2015=a5=$\frac{1}{5}$$\sqrt{3}$,
故答案为:$\frac{{\sqrt{3}}}{5}$.
点评 本题考查了数列的递推公式的应用及周期性的应用,属于基础题.
A. | 1 | B. | -1 | C. | -2 | D. | 2 |
A. | (4$\sqrt{3}$,$\frac{π}{6}$) | B. | (4$\sqrt{3}$,$\frac{π}{3}$) | C. | (4$\sqrt{3}$,$\frac{11π}{6}$) | D. | (4$\sqrt{3}$,-$\frac{π}{6}$) |
A. | (2,$\frac{2}{3}$π) | B. | ($\sqrt{2}$,$\frac{2}{3}$π) | C. | ($\sqrt{2}$,$\frac{4}{3}$π) | D. | (2,$\frac{4}{3}$π) |