题目内容

4.计算:${A}_{3}^{2}{+A}_{4}^{2}$+…+${A}_{100}^{2}$.

分析 利用排列数公式${A}_{n}^{m}$=${A}_{m}^{m}$•${C}_{n}^{m}$与组合数公式${C}_{n}^{m+1}$+${C}_{n}^{m}$=${C}_{n+1}^{m+1}$,进行计算即可.

解答 解:${A}_{3}^{2}$+${A}_{4}^{2}$+…+${A}_{100}^{2}$=${A}_{2}^{2}$(${C}_{3}^{2}$+${C}_{4}^{2}$+…+${C}_{100}^{2}$)
=2(${C}_{3}^{3}$+${C}_{3}^{2}$+${C}_{4}^{2}$+…+${C}_{100}^{2}$-1)
=2(${C}_{4}^{3}$+${C}_{4}^{2}$+…+${C}_{100}^{2}$-1)
=2(${C}_{100}^{3}$+${C}_{100}^{2}$-1)
=2(${C}_{101}^{3}$-1)
=2${C}_{101}^{3}$-2.

点评 本题考查了排列数与组合数公式的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网