题目内容

1.点M(6,-2$\sqrt{3}$)的极坐标为(  )
A.(4$\sqrt{3}$,$\frac{π}{6}$)B.(4$\sqrt{3}$,$\frac{π}{3}$)C.(4$\sqrt{3}$,$\frac{11π}{6}$)D.(4$\sqrt{3}$,-$\frac{π}{6}$)

分析 利用$ρ=\sqrt{{x}^{2}+{y}^{2}}$,tanθ=$\frac{y}{x}$即可得出.

解答 解:$ρ=\sqrt{{x}^{2}+{y}^{2}}$=$\sqrt{{6}^{2}+(-2\sqrt{3})^{2}}$=4$\sqrt{3}$,
tanθ=$\frac{-2\sqrt{3}}{6}$=-$\frac{\sqrt{3}}{3}$,$θ∈(\frac{3π}{2},2π)$,解得θ=$\frac{11π}{6}$.
∴点M的极坐标为$(4\sqrt{3},\frac{11π}{6})$.
故选:C.

点评 本题考查了极坐标化为直角坐标的方法,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网