题目内容

7.数列{an}的通项公式an=ncos$\frac{nπ}{2}$+1,前n项和为Sn,则s13=19.

分析 an=ncos$\frac{nπ}{2}$+1,可得a1+a2+a3+a4=6,a5+a6+a7+a8=a9+a10+a11+a12=6,计算出a13即可得出.

解答 解:∵an=ncos$\frac{nπ}{2}$+1,
∴a1+a2+a3+a4=1-1+1+5=6,
同理可得a5+a6+a7+a8=a9+a10+a11+a12=6,而${a}_{13}=13cos\frac{13π}{2}$+1=1.
∴S13=6×3+1=19.
故答案为:19.

点评 本题考查了数列分组求和方法、三角函数的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网