题目内容
【题目】判断下列函数的奇偶性.
(1)f(x)=x2-|x|+1,x∈[-1,4]; (2)f(x)=;
(3)f(x)=; (4)f(x)=
【答案】见解析
【解析】(1)虽然f(-x)=f(x),但定义域不关于原点对称,
故f(x)=x2-|x|+1,x∈[-1,4]是非奇非偶函数.
(2)由得-1≤x<0,或0<x≤1.
故函数f(x)的定义域为[-1,0)∪(0,1],关于原点对称,
且有x+2>0.从而有f(x)===,
于是f(-x)=-=-f(x).故函数f(x)为奇函数.
(3)∵≥0,∴-1≤x<1.
∴定义域不关于原点对称.∴f(x)为非奇非偶函数.
(4)当x>0时,x<0 ,f(-x)=(-x)2+(-x)=x2-x;
当x<0时,x>0,f(-x)=-(-x)2+(-x)=-x2-x.
∴f(-x)=-f(x),∴f(x)是奇函数.
练习册系列答案
相关题目
【题目】现从某班的一次期末考试中,随机的抽取了七位同学的数学(满分150分)、物理(满分110分)成绩如下表所示,数学、物理成绩分别用特征量表示,
特征量 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
t | 101 | 124 | 119 | 106 | 122 | 118 | 115 |
y | 74 | 83 | 87 | 75 | 85 | 87 | 83 |
求关于t的回归方程;
(2)利用(1)中的回归方程,分析数学成绩的变化对物理成绩的影响,并估计该班某学生数学成绩130分时,他的物理成绩(精确到个位).
附:回归方程 中斜率和截距的最小二乘估计公式分别为:
.