题目内容
【题目】已知函数f(x)=|2x-1|+|x-2a|.
(1)当a=1时,求f(x)≤3的解集;
(2)当x∈[1,2]时,f(x)≤3恒成立,求实数a的取值范围.
【答案】见解析
【解析】(1)当a=1时,由f(x)≤3,可得|2x-1|+|x-2|≤3,
∴①或②或③
解①得0≤x<,解②得≤x<2,解③得x=2.
综上可得,0≤x≤2,即不等式的解集为[0,2].
(2)∵当x∈[1,2]时,f(x)≤3恒成立,
即|x-2a|≤3-|2x-1|=4-2x,
故2x-4≤2a-x≤4-2x,
即3x-4≤2a≤4-x.
再根据3x-4在x∈[1,2]上的最大值为6-4=2,4-x的最小值为4-2=2,
∴2a=2,∴a=1,
即a的取值范围为{1}.
练习册系列答案
相关题目