题目内容
【题目】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第行的所有数字之和为,若去除所有为1的项,依次构成数列,则此数列的前55项和为( )
A. 4072B. 2026C. 4096D. 2048
【答案】A
【解析】
利用n次二项式系数对应杨辉三角形的第n+1行,然后令x=1得到对应项的系数和,结合等比数列和等差数列的公式进行转化求解即可.
解:由题意可知:每一行数字和为首项为1,公比为2的等比数列,
则杨辉三角形的前n项和为Sn2n﹣1,
若去除所有的为1的项,则剩下的每一行的个数为1,2,3,4,……,可以看成构成一个首项为1,公差为1的等差数列,
则Tn,
可得当n=10,所有项的个数和为55,
则杨辉三角形的前12项的和为S12=212﹣1,
则此数列前55项的和为S12﹣23=4072,
故选:A.
练习册系列答案
相关题目