题目内容
【题目】如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1 , C2的四个交点按纵坐标从大到小依次为A,B,C,D,记 ,△BDM和△ABN的面积分别为S1和S2 .
(1)当直线l与y轴重合时,若S1=λS2 , 求λ的值;
(2)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.
【答案】
(1)解:以题意可设椭圆C1和C2的方程分别为
, .其中a>m>n>0,
>1.
如图1,若直线l与y轴重合,即直线l的方程为x=0,则
,
,
所以 .
在C1和C2的方程中分别令x=0,可得yA=m,yB=n,yD=﹣m,
于是 .
若 ,则 ,化简得λ2﹣2λ﹣1=0,由λ>1,解得 .
故当直线l与y轴重合时,若S1=λS2,则 .
(2)解:如图2,若存在与坐标轴不重合的直线l,使得S1=λS2,根据对称性,
不妨设直线l:y=kx(k>0),
点M(﹣a,0),N(a,0)到直线l的距离分别为d1,d2,则
,所以d1=d2.
又 ,所以 ,即|BD|=λ|AB|.
由对称性可知|AB|=|CD|,所以|BC|=|BD|﹣|AB|=(λ﹣1)|AB|,
|AD|=|BD|+|AB|=(λ+1)|AB|,于是 .
将l的方程分别与C1和C2的方程联立,可求得
根据对称性可知xC=﹣xB,xD=﹣xA,于是
②
从而由①和②可得
③
令 ,则由m>n,可得t≠1,于是由③可得 .
因为k≠0,所以k2>0.于是③关于k有解,当且仅当 ,
等价于 ,由λ>1,解得 ,
即 ,由λ>1,解得 ,所以
当 时,不存在与坐标轴不重合的直线l,使得S1=λS2;
当 时,存在与坐标轴不重合的直线l,使得S1=λS2.
【解析】(1)设出两个椭圆的方程,当直线l与y轴重合时,求出△BDM和△ABN的面积S1和S2 , 直接由面积比=λ列式求λ的值;(2)假设存在与坐标轴不重合的直线l,使得S1=λS2 , 设出直线方程,由点到直线的距离公式求出M和N到直线l的距离,利用数学转化思想把两个三角形的面积比转化为线段长度比,由弦长公式得到线段长度比的另一表达式,两式相等得到 ,换元后利用非零的k值存在讨论λ的取值范围.
【考点精析】关于本题考查的点到直线的距离公式,需要了解点到直线的距离为:才能得出正确答案.
【题目】某中学一名数学老师对全班50名学生某次考试成绩分男女生进行统计(满分150分),其中120分(含120分)以上为优秀,绘制了如图所示的两个频率分布直方图:
(1)根据以上两个直方图完成下面的列联表:
性别 成绩 | 优秀 | 不优秀 | 总计 |
男生 | |||
女生 | |||
总计 |
(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
附:,其中.
【题目】甲、乙两个篮球队在4次不同比赛中的得分情况如下:
甲队 | 88 | 91 | 92 | 96 |
乙队 | 89 | 93 | 9▓ | 92 |
乙队记录中有一个数字模糊(即表中阴影部分),无法确认,假设这个数字具有随机性,并用表示.
(Ⅰ)在4次比赛中,求乙队平均得分超过甲队平均得分的概率;
(Ⅱ)当时,分别从甲、乙两队的4次比赛中各随机选取1次,记这2个比赛得分之差的绝对值为,求随机变量的分布列;
(Ⅲ)如果乙队得分数据的方差不小于甲队得分数据的方差,写出的取值集合.(结论不要求证明)
【题目】现行的个税法修正案规定:个税免征额由原来的2000元提高到3500元,并给出了新的个人所得税税率表:
全月应纳税所得额 | 税率 |
不超过1500元的部分 | 3% |
超过1500元至4500元的部分 | 10% |
超过4500元至9000元的部分 | 20% |
超过9000元至35000元的部分 | 25% |
…… | … |
例如某人的月工资收入为5000元,那么他应纳个人所得税为:(元).
(Ⅰ)若甲的月工资收入为6000元,求甲应纳的个人收的税;
(Ⅱ)设乙的月工资收入为元,应纳个人所得税为元,求关于的函数;
(Ⅲ)若丙某月应纳的个人所得税为1000元,给出丙的月工资收入.(结论不要求证明)