题目内容
【题目】在平面直角坐标系中,抛物线的焦点为,点是抛物线上一点,且.
(1)求的值;
(2)若为抛物线上异于的两点,且.记点到直线的距离分别为,求的值.
【答案】(1);(2).
【解析】分析:(1)利用抛物线的定义求p的值.(2)先求出a的值,再联立直线的方程和抛物线的方程得到韦达定理,再求|(y1+2) (y2+2)|的值.
详解:(1)因为点A(1,a) (a>0)是抛物线C上一点,且AF=2,
所以+1=2,所以p=2.
(2)由(1)得抛物线方程为y2=4x.
因为点A(1,a) (a>0)是抛物线C上一点,所以a=2.
设直线AM方程为x-1=m (y-2) (m≠0),M(x1,y1),N(x2,y2).
由消去x,得y2-4m y+8m-4=0,
即(y-2)( y-4m+2)=0,所以y1=4m-2.
因为AM⊥AN,所以-代m,得y2=--2,
所以d1d2=|(y1+2) (y2+2)|=|4m×(-)|=16.
【题目】涡阳县某华为手机专卖店对市民进行华为手机认可度的调查,在已购买华为手机的名市民中,随机抽取名,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如图:
分组(岁) | 频数 |
合计 |
(1)求频数分布表中、的值,并补全频率分布直方图;
(2)在抽取的这名市民中,从年龄在、内的市民中用分层抽样的方法抽取人参加华为手机宣传活动,现从这人中随机选取人各赠送一部华为手机,求这人中恰有人的年龄在内的概率.
【题目】某餐厅通过查阅了最近5次食品交易会参会人数 (万人)与餐厅所用原材料数量 (袋),得到如下统计表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
参会人数 (万人) | 13 | 9 | 8 | 10 | 12 |
原材料 (袋) | 32 | 23 | 18 | 24 | 28 |
(1)根据所给5组数据,求出关于的线性回归方程.
(2)已知购买原材料的费用 (元)与数量 (袋)的关系为,
投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).
参考公式: , .
参考数据: , , .