题目内容

正方形ABCD的边长为a,MA⊥平面ABCD,且MA=a,试求:
(1)点M到BD的距离;
(2)AD到平面MBC的距离.
(1)连接AC交BD于O,连接MO.
由正方形ABCD可得BD⊥AC.
∵MA⊥平面ABCD,∴MO⊥BD.
∴MO为点M到BD的距离.
∵MA=a,AO=
1
2
AC
=
2
2
a,
∴MO=
MA2+AO2
=
6
2
a2

2)过A作AH⊥PB于H.
∵MA⊥平面ABCD,BC⊥AB,
∴BC⊥AH.
∵BM∩BC=B.
∴AH⊥平面BCM.
又ADBC,AD?平面BCM,BC?平面BCM.
∴AD平面BCM.
∴AH为AD到平面MBC的距离.
在Rt△MAB中,AM=
AM2+AB2
=
2
a

∴AH=
AM•AB
BM
=
a2
2
a
=
2
2
a.
∴AD到平面MBC的距离.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网