题目内容

长方体ABCD-A1B1C1D1中,AB=4,AD=6,AA1=4,M是A1C1的中点,P在线段BC上,且CP=2,Q是DD1的中点,求:
(1)M到直线PQ的距离;
(2)M到平面AB1P的距离.
如图,建立空间直角坐标系B-xyz,则A(4,0,0),M(2,3,4),P(0,4,0),Q(4,6,2).
(1)∵
QM
=(-2,-3,2),
QP
=(-4,-2,-2),
QM
QP
上的射影为
QM
QP
|
QP
|
=
(-2)×(-4)+(-3)×(-2)+2×(-2)
(-4)2+(-2)2+(-2)2
=
5
6
6

故M到PQ的距离为
QM
2
-(
5
6
6
)2
=
462
6

(2)设
n
=(x,y,z)是平面AB1P的法向量,则
n
AB1
n
AP

AB1
=(-4,0,4),
AP
=(-4,4,0),
-4x+4z=0
-4x+4y=0

因此可取
n
=(1,1,1),由于
MA
=(2,-3,-4),
那么点M到平面AB1P的距离为d=
|
MA
n
|
|
n
|
=
|2×1+(-3)×1+(-4)×1|
3
=
5
3
3

故M到平面AB1P的距离为
5
3
3

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网