题目内容
(本题满分15分)已知点
在抛物线![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203948410676.png)
上,
点到抛物线
的焦点F的距离为2.
(Ⅰ)求抛物线
的方程;
(Ⅱ)已知直线
与抛物线C交于O (坐标原点),A两点,直线
与抛物线C交于B,D两点.
(ⅰ) 若 |
,求实数
的值;
(ⅱ) 过A,B,D分别作y轴的垂线,垂足分别为A1,B1,D1.记
分别为三角形OAA1和四边形BB1D1D的面积,求
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232039486604002.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203948379650.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203948410676.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203948426524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203948442405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203948473310.png)
(Ⅰ)求抛物线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203948473310.png)
(Ⅱ)已知直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203948520613.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203948535693.png)
(ⅰ) 若 |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203948551674.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203948582348.png)
(ⅱ) 过A,B,D分别作y轴的垂线,垂足分别为A1,B1,D1.记
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203948598397.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203948613457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232039486604002.png)
(Ⅰ)抛物线
的准线为
,
由抛物线定义和已知条件可知
,
解得
,故所求抛物线方程为
.
(Ⅱ)(ⅰ)解: 设B(x1,y1), D(x2,y2),由
得
,
由Δ
,得
或
,且y1+y2=4m, y1y2=-4m.
又由
得y2-4my=0,所以y=0或4m.
故A (4m2,4m).由 | BD |=2 | OA |,得(1+m2)(y1-y2)2=4 (16m4+16m2),
而 (y1-y2)2=16m2+16m,故m=
.
(ⅱ) 解: 由(Ⅰ)得x1+x2=m(y1+y2)+2m=4m2+2m.
所以
=
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232039492221085.png)
=
=
.
令
=t,因为
或
,所以-1<t<0或t>0.
故
=
,所以 0<
<1 或
>1,工资 即 0<
<1 或
>1.
所以,
的取值范围是(0,1)∪(1,+∞).
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203948676594.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203948707496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203948785532.png)
由抛物线定义和已知条件可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203948800993.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203949003414.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203949019485.png)
(Ⅱ)(ⅰ)解: 设B(x1,y1), D(x2,y2),由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203949034945.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203949050707.png)
由Δ
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203949081310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203949097428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203949112437.png)
又由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203949128878.png)
故A (4m2,4m).由 | BD |=2 | OA |,得(1+m2)(y1-y2)2=4 (16m4+16m2),
而 (y1-y2)2=16m2+16m,故m=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203949159316.png)
(ⅱ) 解: 由(Ⅰ)得x1+x2=m(y1+y2)+2m=4m2+2m.
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203949175529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232039491901140.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232039492221085.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203949253893.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203949268880.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203949284400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203949097428.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203949112437.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203949331489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203949346723.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203949331489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203949331489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203948613457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203948613457.png)
所以,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203948613457.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目