题目内容

如图,椭圆C1
x2
a2
+
y2
b2
=1(a>b,b>0)和圆C2:x2+y2=b2,已知圆C2将椭圆Cl的长轴三等分,且圆C2的面积为π.椭圆Cl的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A、B,直线EA、EB与椭圆C1的另一个交点分别是点P、M.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)(i)设PM的斜率为t,直线l斜率为K1,求
K1
t
的值;
(ii)求△EPM面积最大时直线l的方程.
(Ⅰ)∵圆C2:x2+y2=b2的面积为π,
∴b2π=π,即b=1.
∴a=3b=3,
椭圆方程为
x2
9
+y2=1

(Ⅱ)(i)由题意知直线PE、ME的斜率存在且不为0,PE⊥EM,
不妨设直线PE的斜率为k(k>0),则PE:y=kx-1,
y=kx-1
x2
9
+y2=1
,得
x=
18k
9k2+1
y=
9k2-1
9k2+1
x=0
y=-1

∴P(
18k
9k2+1
9k2-1
9k2+1
),
-
1
k
去代k,得M(
-18k
k2+9
9-k2
k2+9
)
,则
t=kPM=
9k2-1
9k2+1
-
9-k2
k2+9
18k
9k2+1
+
18k
k2+9
=
k2-1
10k

y=kx-1
x2+y2=1
,得
x=
2k
1+k2
y=
k2-1
k2+1
x=0
y=-1

A(
2k
1+k2
k2-1
k2+1
)

K1=
k2-1
2k
,则
K1
t
=
k2-1
2k
k2-1
10k
=5

(ii)|PE|=
(
18k
9k2+1
)2+(
18k2
9k2+1
)2
=
18k
9k2+1
1+k2

|EM|=
18
k
9
k2
+1
1+
1
k2
=
18
9+k2
1+k2

S△EPM=
1
2
18k
9k2+1
1+k2
18
9+k2
1+k2

=
162k(1+k2)
(9+k2)(1+9k2)
=
162(k+k3)
9k4+82k2+9

=
162(
1
k
+k)
9k2+82+
9
k2

1
k
+k=u

S△EPM=
162u
82+9(u2-2)
=
162
9u+
64
u
162
2
9u•
64
u
=
27
8

当且仅当
1
k
+k=u=
8
3
时取等号,
此时(k-
1
k
)2=(k+
1
k
)2-4=
28
9

k-
1
k
2
7
3

则直线AB:y=
k2-1
2k
x

∴所求的直线l的方程为:y=±
7
3
x
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网