题目内容

20.已知双曲线C1、C2的顶点重合,C1的方程为$\frac{{x}^{2}}{4}$-y2=1,若C2的一条渐近线的斜率是C1的一条渐近线的斜率的2倍,则C2的方程为$\frac{x^2}{4}-\frac{y^2}{4}=1$.

分析 求出C1的一条渐近线的斜率,可得C2的一条渐近线的斜率,利用双曲线C1、C2的顶点重合,可得C2的方程.

解答 解:C1的方程为$\frac{{x}^{2}}{4}$-y2=1,一条渐近线的方程为y=$\frac{x}{2}$,
因为C2的一条渐近线的斜率是C1的一条渐近线的斜率的2倍,
所以C2的一条渐近线的方程为y=x,
因为双曲线C1、C2的顶点重合,
所以C2的方程为$\frac{x^2}{4}-\frac{y^2}{4}=1$.
故答案为:$\frac{x^2}{4}-\frac{y^2}{4}=1$.

点评 本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网