题目内容

5.若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为$\frac{π}{3}$.

分析 设圆锥的底面半径为r,高为h,母线长为l,由已知中圆锥的侧面积与过轴的截面面积之比为2π,可得l=2h,进而可得其母线与轴的夹角的余弦值,进而得到答案.

解答 解:设圆锥的底面半径为r,高为h,母线长为l,
则圆锥的侧面积为:πrl,过轴的截面面积为:rh,
∵圆锥的侧面积与过轴的截面面积之比为2π,
∴l=2h,
设母线与轴的夹角为θ,
则cosθ=$\frac{h}{l}$=$\frac{1}{2}$,
故θ=$\frac{π}{3}$,
故答案为:$\frac{π}{3}$.

点评 本题考查的知识点是旋转体,其中根据已知求出圆锥的母线与轴的夹角的余弦值,是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网