题目内容
【题目】设A、B、C、D为空间四个不共面的点,以的概率在每对点之间连一条边,任意两对点之间是否连边是相互独立的,则点A与B可用(一条边或者若干条边组成的)空间折线连接的概率为_______.
【答案】
【解析】
每对点之间是否连边有2种可能,共有种情形.考虑其中点A、B可用折线连接的情形数.
(1)有边AB:共种情形.
(2)无边AB,但有边CD:此时,点A、B可用折线连接当且仅当点A与C、D中至少一点相连,且点B与C、D中至少一点相连,这样的情形数为.
(3)无边AB,也无边CD:此时,AC与CB相连有种情形,AD与DB相连也有情形,但其中AC、CB、AD、DB均相连的情形被重复计了一次,故点A与B可用折线连接的情形数为.
综上,情形数的总和为.
故点A与B可用折线连接的概率为.
练习册系列答案
相关题目
【题目】在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如表1.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡为优等品,寿命小于300天的灯泡为次品,其余的灯泡为正品.
表1
寿命(天) | 频数 | 频率 |
20 | 0.10 | |
30 | a | |
70 | 0.35 | |
b | 0.15 | |
50 | 0.25 | |
合计 | 200 | 1 |
(1)根据表1中的数据,写出a、b的值;
(2)某人从灯泡样品中随机地购买了个,若这n个灯泡的等级情形恰与按三个等级分层抽样所得的结果相同,求n的最小值;
(3)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X表示此人所购买的灯泡中次品的个数,求X的分布列和数学期望.