题目内容
【题目】如图,O为坐标原点,点F为抛物线C1:的焦点,且抛物线C1上点P处的切线与圆C2:相切于点Q.
(Ⅰ)当直线PQ的方程为时,求 抛物线C1的方程;
(Ⅱ)当正数P变化时,记S1 ,S2分别为△FPQ,△FOQ的面积,求的最小值.
【答案】(1)x2=4y.(2).
【解析】
试题解析:(Ⅰ)设点P(x0,),由x2=2py(p>0)得,y=,求导y′=,
因为直线PQ的斜率为1,所以=1且x0 --√2=0,解得p=2,
所以抛物线C1 的方程为x2=4y.
(Ⅱ)因为点P处的切线方程为:y-=(x-x0),即2x0x-2py-x02=0,
∴ OQ的方程为y=-x
根据切线与圆切,得d=r,即,化简得x04=4x02+4p2,
由方程组,解得Q(,),
所以|PQ|=√1+k2|xP-xQ|=
点F(0,)到切线PQ的距离是d=,
所以S1==,
S2=,
而由x04=4x02+4p2知,4p2=x04-4x02>0,得|x0|>2,
所以
=
=+3≥2+3,当且仅当时取“=”号,
即x02=4+2,此时,p=.
所以的最小值为2+3.
练习册系列答案
相关题目