题目内容
【题目】已知函数.
(Ⅰ)若函数有两个零点,求的取值范围;
(Ⅱ)证明:当时,关于的不等式在上恒成立.
【答案】(1)(2)
【解析】试题分析:(Ⅰ)由题意,可利用导数法来进行求解,由,转换为,即将问题转化为曲线与直线有两交点,求的取值范围,构造函数,求函数的单调区间,再求函数的最值,从而问题可得解;
(Ⅱ)由题意,将问题转化为:当时,不等式在上恒成立,可构造函数,并证明其最大值在区间上成立即可.
试题解析:(Ⅰ)令,∴;
令,∴,
令,解得,令,解得,
则函数在上单调递增,在上单调递减,∴.
要使函数有两个零点,则函数的图象与有两个不同的交点,
则,即实数的取值范围为.
(Ⅱ)∵,∴.
设, ,∴,
设,∴,则在上单调递增,
又, ,
∴,使得,即,∴.
当时, , ;当时, , ;
∴函数在上单调递增,在上单调递减,
∴ .
设,∴,
当时, 恒成立,则在上单调递增,
∴,即当时, ,
∴当时,关于的不等式在上恒成立.
练习册系列答案
相关题目
【题目】某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如表:
测试指标 | [70,76) | [76,82) | [82,88) | [88,94) | [94,100] |
芯片甲 | 8 | 12 | 40 | 32 | 8 |
芯片乙 | 7 | 18 | 40 | 29 | 6 |
(1)试分别估计芯片甲,芯片乙为合格品的概率;
(2)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(I)的前提下,
(i)记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的分布列和数学期望;
(ii)求生产5件芯片乙所获得的利润不少于140元的概率.