题目内容
已知(1+x)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n(n∈N*).
(1)求a0及Sn=a1+a2+a3+…+an;
(2)试比较Sn与(n-2)2n+2n2的大小,并说明理由.
(1)a0=2n Sn=3n-2n.(2)当n=1时,Sn>(n-2)2n+2n2;当n=2,3时,Sn<(n-2)2n+2n2;当n≥4,n∈N*时,Sn>(n-2)2n+2n2.
解析
练习册系列答案
相关题目
题目内容
已知(1+x)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n(n∈N*).
(1)求a0及Sn=a1+a2+a3+…+an;
(2)试比较Sn与(n-2)2n+2n2的大小,并说明理由.
(1)a0=2n Sn=3n-2n.(2)当n=1时,Sn>(n-2)2n+2n2;当n=2,3时,Sn<(n-2)2n+2n2;当n≥4,n∈N*时,Sn>(n-2)2n+2n2.
解析