题目内容
四张卡片上分别标有数字“2”“0”“0”“9”,其中“9”可当“6”用,则由这四张卡片可组成不同的四位数有多少个?
12
解析
若的展开式中前三项系数成等差数列,求:(1)展开式中含的一次幂的项;(2)展开式中所有的有理项(3)展开式中系数最大的项
4位参加辩论比赛的同学,比赛规则是:每位同学必须从甲、乙两道题中任选一题做答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0分,则这4位同学有多少种不同得分情况?
某运输公司有7个车队.每个车队的车都多于4辆且型号相同,要从这7个车队中抽出10辆车组成一运输车队,每个车队至少抽1辆车,则不同抽法有多少种?
解下列方程或不等式.(1)3ªA8x=4ªA9x-1;(2)Ax-22+x≥2.
已知(1+x)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n(n∈N*).(1)求a0及Sn=a1+a2+a3+…+an;(2)试比较Sn与(n-2)2n+2n2的大小,并说明理由.
已知:(1)当时,求的值。(2)设,求证:。
已知的展开式中偶数项二项式系数和比展开式中奇数项二项式系数和小,求:(I)展开式中二项式系数最大的项; (II)设展开式中的常数项为p,展开式中所有项系数的和为q,求p+q.
已知展开式的各项依次记为.设.(1)若的系数依次成等差数列,求的值;(2)求证:对任意,恒有.