题目内容

已知向量a=(cosλθ,cos(10-λ)θ),b=(sin(10-λ)θ,sinλθ),λ、θ∈R.
(1)求|a|2+|b|2的值;
(2)若a⊥b,求θ;
(3)若θ=,求证:a∥b.
(1)2(2)θ=(3)见解析
(1)解:∵|a|=
|b|=
∴|a|2+|b|2=2.
(2)解:∵a⊥b,
∴cosλθ·sin(10-λ)θ+cos(10-λ)θ·sinλθ=0,
∴sin[(10-λ)θ+λθ]=0,∴sin10θ=0,
∴10θ=kπ,k∈Z,∴θ=,k∈Z.
(3)证明:∵θ=
cosλθ·sinλθ-cos(10-λ)θ·sin[(10-λ)θ]
=cos·sin-cos·sin
=cos·sin-sin·cos=0,∴a∥b
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网