题目内容
如图,
,
,…,
,…是曲线
上的点,
,
,…,
,…是
轴正半轴上的点,且
,
,…,
,… 均为斜边在
轴上的等腰直角三角形(
为坐标原点).
(1)写出
、
和
之间的等量关系,以及
、
和
之间的等量关系;
(2)求证:
(
);
(3)设
,对所有
,
恒成立,求实数
的取值范围.![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232200084914067.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220007571627.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220007586650.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220007633656.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220007680934.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220007696591.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220007727594.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220007742614.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220007758266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220007852574.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220007867578.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220007930629.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220007758266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008008354.png)
(1)写出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008023388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008054348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008195347.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008023388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008054348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008288377.png)
(2)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008320756.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008335506.png)
(3)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232200083821043.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008335506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008429640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008460267.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232200084914067.png)
(1)
,
(2)
,
(3)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008647650.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008538698.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008554704.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008335506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008320756.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008647650.png)
第一问利用有
,
得到
第二问证明:①当
时,可求得
,命题成立;②假设当
时,命题成立,即有
则当
时,由归纳假设及
,
得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232200089281309.png)
第三问
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232200089901516.png)
.………………………2分
因为函数
在区间
上单调递增,所以当
时,
最大为
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220009240554.png)
解:(1)依题意,有
,
,………………4分
(2)证明:①当
时,可求得
,命题成立; ……………2分
②假设当
时,命题成立,即有
,……………………1分
则当
时,由归纳假设及
,
得
.
即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232200094582002.png)
解得
(
不合题意,舍去)
即当
时,命题成立. …………………………………………4分
综上所述,对所有
,
. ……………………………1分
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232200098801507.png)
.………………………2分
因为函数
在区间
上单调递增,所以当
时,
最大为
,即
.……………2分
由题意,有![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220010176696.png)
. 所以,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008647650.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008538698.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008554704.png)
第二问证明:①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008725357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008741641.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008756412.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008803779.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008881466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008897727.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232200089281309.png)
第三问
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232200089591033.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232200089901516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232200090061631.png)
因为函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220009037686.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220009053473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008725357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220009100364.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220009224327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220009240554.png)
解:(1)依题意,有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008538698.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008554704.png)
(2)证明:①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008725357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008741641.png)
②假设当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008756412.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008803779.png)
则当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008881466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008897727.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232200089281309.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232200094582002.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220009474922.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220009708899.png)
即当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008881466.png)
综上所述,对所有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008335506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008320756.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232200083821043.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232200098801507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232200099891678.png)
因为函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220009037686.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220009053473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008725357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220009100364.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220009224327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220009240554.png)
由题意,有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220010176696.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220010192412.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823220008647650.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目