题目内容
已知椭圆![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203224402750.png)
的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
,
,
是椭圆
上关于
轴对称的任意两个不同的点,连结
交椭圆
于另一点
,证明直线
与
轴相交于定点
;
(Ⅲ)在(Ⅱ)的条件下,过点
的直线与椭圆
交于
,
两点,求
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203224402750.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203224418535.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203224636307.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203224652611.png)
(Ⅰ)求椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203224683284.png)
(Ⅱ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203224839473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203224870292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203224886305.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203224683284.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225011249.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225026366.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203224683284.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225058312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225073381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225011249.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225120337.png)
(Ⅲ)在(Ⅱ)的条件下,过点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225120337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203224683284.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225167386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225182338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225198598.png)
(Ⅰ)由题意知
,
所以
.
即
.
又因为
,
所以
,
.
故椭圆
的方程为
. …4分
(Ⅱ)由题意知直线
的斜率存在,设直线
的方程为
.
由
得
. ① …6分
设点
,
,则
.
直线
的方程为
.
令
,得
.
将
,
代入,
整理,得
. ②
由①得
,
代入②
整理,得
.
所以直线
与
轴相交于定点
. …10分
(Ⅲ)当过点
直线
的斜率存在时,设直线
的方程为
,且
,
在椭圆
上.
由
得
.
易知
.
所以
,
,
.
则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226883975.png)
.
因为
,所以
.
所以
.
当过点
直线
的斜率不存在时,其方程为
.
解得:
,
.
此时
.
所以
的取值范围是![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203227210476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225214517.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225260760.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225276542.png)
又因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225307652.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225323402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225338417.png)
故椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203224683284.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225370625.png)
(Ⅱ)由题意知直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225026366.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225026366.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225432596.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232032255101047.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225541979.png)
设点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225557557.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225572571.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225588575.png)
直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225073381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225619818.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225838383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225900787.png)
将
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225916613.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225947634.png)
整理,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225962897.png)
由①得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226025800.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226103854.png)
整理,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226118290.png)
所以直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225073381.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225011249.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226165499.png)
(Ⅲ)当过点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225120337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226212463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226212463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226446580.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226462667.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226477627.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203224683284.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232032265241034.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226649927.png)
易知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226664393.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226774898.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226836889.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226867894.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226883975.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232032268981045.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226961482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226976897.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226992887.png)
当过点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225120337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226212463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203226118290.png)
解得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203227070640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203227164606.png)
此时
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203227179751.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203225198598.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203227210476.png)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目