【题目】学生社团是指学生在自愿基础上结成的各种群众性文化、艺术、学术团体.不分年级、由兴趣爱好相近的同学组成,在保证学生完成学习任务和不影响学校正常教学秩序的前提下开展各种活动.某校就学生对“篮球社团、动漫社团、文学社团和摄影社团”四个社团选择意向进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整).
请根据图中信息,解答下列问题:
(1)求扇形统计图中m的值,并补全条形统计图;
(2)在“动漫社团”活动中,甲、乙、丙、丁、戊五名同学表现优秀,现决定从这五名同学中任选两名参加“中学生原创动漫大赛”,恰好选中甲、乙两位同学的概率为 .
(3)已知该校有1200名学生,请估计“文学社团”共有多少人?
【题目】如图,矩形ABCD中,BC=4,且AB=,连接对角线AC,点E为AC中点,点F为线段AB上的动点,连接EF,作点C关于EF的对称点C',连接C'E,C'F,若△EFC'与△ACF的重叠部分(△EFG)面积等于△ACF的,则BF=________.
【题目】为了迎接“五一”小长假的购物高峰.某服装专卖店老板小王准备购进甲、乙两种夏季服装.其中甲种服装每件的成本价比乙种服装的成本价多20元,甲种服装每件的售价为240元比乙种服装的售价多80元.小王用4000元购进甲种服装的数量与用3200元购进乙种服装的数量相同.
(1)甲种服装每件的成本是多少元?
(2)要使购进的甲、乙两种服装共200件的总利润(利润=售价-进价)不少于21100元,且不超过21700元,问小王有几种进货方案?
【题目】如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD.
(1)求证:四边形AEBD是矩形;
(2)连接CE交AB于点F,若∠ABE=30°,AE=2,求EF的长.
【题目】抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.
(1)如图1,连接CD,求线段CD的长;
(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;
(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C绕点B2旋转一周在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.
【题目】如图所示,已知正方形ABCD,对角线AC、BD交于点O,点P是边BC上一动点(不与点B、C重合),过点P作∠BPF,使得∠BPF=∠ACB,BG⊥PF于点F,交AC于点G,PF交BD于点E,给出下列结论,其中正确的是( )
①;②PE=2BF;③在点P运动的过程中,当GB=GP时,;④当P为BC的中点时,.
A.①②③B..①②④C.②③④D..①②③④
【题目】如图,线段AB是直线y=x+1的一部分,其中点A在y轴上,点B横坐标为2,曲线BC是双曲线()的一部分,由点C开始不断重复“ABC”的过程,形成一组波浪线,点P(2019,m)与Q(2025,n)均在该波浪线上,G为x轴上一动点,则△PQG周长的最小值为( )
A.16B.C.D.
【题目】已知抛物线与反比例函数的图像在第一象限有一个公共点,其横坐标为1,则一次函数的图像可能是( )
A.
B.
C.
D.
【题目】如图所示,二次函数的图像(记为抛物线)与y轴交于点C,与x轴分别交于点A、B,点A、B的横坐标分别记为,,且.
(1)若,,且过点,求该二次函数的表达式;
(2)若关于x的一元二次方程的判别式.求证:当时,二次函数的图像与x轴没有交点.
(3)若,点P的坐标为,过点P作直线l垂直于y轴,且抛物线的顶点在直线l上,连接OP、AP、BP,PA的延长线与抛物线交于点D,若,求的最小值.
【题目】如图所示,的顶点A在反比例函数的图像上,直线AB交y轴于点C,且点C的纵坐标为5,过点A、B分别作y轴的垂线AE、BF,垂足分别为点E、F,且.
(1)若点E为线段OC的中点,求k的值;
(2)若为等腰直角三角形,,其面积小于3.
①求证:;
②把称为,两点间的“ZJ距离”,记为,求的值.