题目内容
【题目】如图所示,二次函数的图像(记为抛物线)与y轴交于点C,与x轴分别交于点A、B,点A、B的横坐标分别记为,,且.
(1)若,,且过点,求该二次函数的表达式;
(2)若关于x的一元二次方程的判别式.求证:当时,二次函数的图像与x轴没有交点.
(3)若,点P的坐标为,过点P作直线l垂直于y轴,且抛物线的顶点在直线l上,连接OP、AP、BP,PA的延长线与抛物线交于点D,若,求的最小值.
【答案】(1) ;(2)见解析;(3)
【解析】
(1)根据题意,把,,点,代入解析式,即可求出解析式;
(2)利用根的判别式进行判断,即可得到结论;
(3)根据二次函数的性质,得到,结合根与系数的关系,得到,然后证明,得到,然后得到,利用二次根式的性质即可得到答案.
解:(1)由题意得:,
∵函数过点,
∴,
∴,
∴.
(2)由题意,一元二次方程的判别式.
∴,
∴,
在函数中,
∵,
∴,
即函数图象与x轴没有交点.
(3)因为函数顶点在直线l上,则有,
即①
∵,
∴,
即,
∴,
由①得:②
∵,
∴
∵,
∴,
则.
∴,
∴,
∴.
∴,
∴.
由②得:,
∴,
∴当时,.
练习册系列答案
相关题目
【题目】2020年是脱贫攻坚年,为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场,经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:
质量 | 组中值 | 数量(只) |
1.0 | 6 | |
1.2 | 9 | |
1.4 | a | |
1.6 | 15 | |
1.8 | 8 |
根据以上信息,解答下列问题:
(1)表中______,补全频数分布直方图;
(2)这批鸡中质量不小于的大约有多少只?
(3)这些贫因户的总收入达到54000元,就能实现全员脱贫目标.按15元的价格售出这批鸡后,该村贫困户能否脱贫?