题目内容
【题目】如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD.
(1)求证:四边形AEBD是矩形;
(2)连接CE交AB于点F,若∠ABE=30°,AE=2,求EF的长.
【答案】(1)证明见解析;(2).
【解析】
(1)由AE∥BD,且AE=BD可得四边形AEBD是平行四边形,再根据AB=AC,D为BC中点,可知AD⊥BC即可得出四边形AEBD是矩形.
(2)根据30°所对的直角边是斜边的一半即可求出EB,再根据矩形的性质求出BC即可利用勾股定理求出EC,由题意可证△AEF∽△BCF,再根据对应边成比例即可求出结果.
(1)证明:∵AE∥BD,AE=BD,
∴四边形AEBD是平行四边形,
∵AB=AC,D为BC的中点,
∴AD⊥BC,
∴∠ADB=90°,
∴四边形AEBD是矩形.
(2)解:∵四边形AEBD是矩形,
∴∠AEB=90°,
∵∠ABE=30°,AE=2,
∴BE=2,BC=4,
∴EC=2,
∵AE∥BC,
∴△AEF∽△BCF,
∴,
∴EFEC=.
练习册系列答案
相关题目