【题目】今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走路程为s(米),s与t之间的函数关系如图所示,则下列说法中,错误的是( )
A. 小明中途休息用了20分钟 B. 小明休息前爬山的速度为每分钟60米
C. 小明在上述过程中所走路程为7 200米 D. 小明休息前后爬山的平均速度相等
【题目】横坐标和纵坐标都是整数的点叫作整点,函数y=的图象上的整点的个数是( )
A. 3个 B. 4个 C. 6个 D. 8个
【题目】在正方形ABCD中,点E是直线CD上一动点,以BE为斜边向上方作等腰直角△BEF,连接AF,试求线段AF与DE的数量关系.
(1)小可同学进行探索:①将点E的位置特殊化,发现DE= ___ AF;
②点E运动过程中,∠BAF= ___ ;(填度数)
(2)如图1,当点E在线段CD上时,证明AF与DE的数量关系;
(3)如图2,当边EF被对角线BD平分时,求值.
【题目】奇异果是新西兰的特产,其实它的祖籍在中国,又名“猕猴桃”.2018年1月份至6月份我市某大型超市新西兰品种的奇异果销售价格y(元/盒)与月份x(1≤x≤6,且x为整数)之间的函数关系如下表:
7月份至12月份奇异果的销售价格y(元/盒)与月份x之间满足函数关系式:y=2x+20(7≤x≤12且x为整数).该超市去年奇异果销售数量z(盒)与月份x(1≤x≤12,且x为整数)之间存在如图所示的变化趋势.若去年该超市奇异果的进价为每盒20元,销售奇异果需要一名超市员工,该员工每月固定人工费用为1500元.
(1)请观察图表中的数据信息直接写出2018年1月份至6月份销售价格y与x之间的函数关系式__ ,根据如图所示的变化趋势,直接写出去年每月销售数量z与x之间满足的函数关系式__ .
(2)求出去年每月该超市的利润w(元)与月份x之间满足的函数关系式.(利润=收入成本费用)
(3)从今年1月份开始,超市决定每卖出一盒奇异果,公司向希望工程捐款2元,奇异果的进价为每盒26元,虽然今年1月份奇异果的销售价格比去年12月份增加4元,但1月份销售数量仍比去年12月份增加了0.4a%;2月份销售价格在1月份的基础上增加了0.5a%,由于其它水果陆续上市,2月份的销售量与1月份持平,这样2月份的利润达到了15780元,请参考以下数据,求出整数a的值.(参考数据:=2025,=2116,=2209)
【题目】如图1是长方体模型,棱长如图所示,图2是它的一种表面展开图.
(1)①在图2中,表示出C可能的位置;
②在图3中画出长方体的一种展开图(不同于图2);
(2)图1中,一只在顶点A的蚂蚁,要吃到C处的甜食,求它沿长方体表面爬行的最短距离;
(3) 在满足AB+BC+BB=9的条件下,当AB为何值时,蚂蚁从A沿长方体表面爬行到C距离最短,并写出其中的一种方案.
【题目】某校积极开展“阳光体育”活动,并开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).
(1)求本次被调查的学生人数;
(2)补全条形统计图;
(3)在扇形统计图中,“篮球”部分所对应的圆心角度数为__ ;
(4)该校共有3000名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?
【题目】在△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC有公共点E,连结DE并延长,与BC的延长线交于点F ,BD=BF.
(1)求证:AC是⊙O的切线;
(2)若∠F=60°,BF=8,求CF的长.
【题目】如图1是某商场从一楼到二楼的自动扶梯,图2是侧面示意图,MN是二楼楼顶,MN∥PQ,点C在MN上,且位于自动扶梯顶端B点的正上方,BC⊥MN.测得AB=10米,在自动扶梯底端A处测得点C的仰角为50°,点B的仰角为30°,求二楼的层高BC(结果保留根号)
(参考数据:sin50°=0.77,cos50°=0.64,tan50°=1.20)
【题目】如图,正六边形ABCDEF内接于⊙O,在弧AB上取点P,连接AP,BP,过点D作DQ∥AP交⊙O于点Q,连接BQ. 已知BP=1,BQ=3,PQ的长为 ,AP的长为_____________.
【题目】如图,在平面直角坐标系中点A的坐标为(3,6),点B(6,0),C是线段OB上一动点(不与O,B重合),过C,O两点的二次函数y1和过C,B两点的二次函数y2的图像开口均向下,它们的顶点分别为OA,AB边上的E,F两点,点C从点O到点B运动过程中,阴影部分的面积大小变化情况是( )
A.不变B.先增大再减小C.先减小再增大D.无法确定