题目内容
【题目】在四边形ABCD中,AD∥BC,AD=2BC,点E为AD的中点,连接BE、BD,∠ABD=90°.
(1)如图l,求证:四边形BCDE为菱形;
(2)如图2,连接AC交BD于点F,连接EF,若AC平分∠BAD,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ABC面积的.
【答案】(1)见解析;(2)△ABF,△AEF,△DEF,△DCF.
【解析】
(1)由题意可得DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;
(2)由题意可证△BFC∽△DFA,由相似三角形的性质可得,FD=2BF,由三角形的中线性质和菱形性质可求解.
证明(1)∵AD=2BC,E为AD的中点,
∴DE=BC,
∵AD∥BC,
∴四边形BCDE是平行四边形,
∵∠ABD=90°,AE=DE,
∴BE=DE,
∴四边形BCDE是菱形.
(2)△ABF,△AEF,△DEF,△DCF,
理由如下:∵BC∥AD,
∴△BFC∽△DFA,
∴,
∴,FD=2BF,
∴S△ABF=S△ABC,
∵FD=2BF
∴S△AFD=2S△ABF,且点E是AD中点,
∴S△AEF=S△EFD=S△ABF=S△ABC,
∵四边形BEDC是菱形,
∴ED=CD,∠BDE=∠BDC,且DF=DF,
∴△DEF≌△DCF(SAS),
∴S△DCF=S△DEF=S△ABF=S△ABC.
练习册系列答案
相关题目