题目内容
【题目】△ABC和△CDE都是等腰三角形,∠BAC=∠EDC=120°.
(1)如图1,A、D、C在同一直线上时,=_______,=_______;
(2)在图1的基础上,固定△ABC,将△CDE绕C旋转一定的角度α(0°<α<360°),如图2,连接AD、BE.
① 的值有没有改变?请说明理由.
②拓展研究:若AB=1,DE=,当 B、D、E在同一直线上时,请计算线段AD的长;
【答案】(1),;(2)①没有改变,理由见解析;②线段AD的长为或.
【解析】
(1)由等腰三角形的性质和直角三角形的性质可得AC=2AH,CH=AH,由平行线分线段成比例可得,即可求解;
(2)①通过证明△ACD∽△BCE,可得;②分两种情况进行讨论,(i)如图,当B、D、E在同一直线上,且点D在BE中间时,过点C作CN⊥BE于N,利用直角三角形的性质和勾股定理求出BE=,由①的结论可求解;(ii)如图,当 B、D、E在同一直线上,且点B在ED中间时,过点B作BH⊥EC于H,利用勾股定理求出BH=,再由①的结论可求解.
解:(1)如图1,过点A作AH⊥BC于H,
∵∠BAC=120°,AB=AC,AH⊥BC,
∴∠ABC=∠ACB=30°,BH=CH,
∴AC=2AH,CH=,
∴BC=2AH,
∵∠BAC=∠EDC=120°,
∴AB∥DE,
∴,
故答案为:,;
(2)①没有改变,
理由如下:∵将△CDE绕C旋转一定的角度α(0°<α<360°),
∴∠ACD=∠BCE,
∵AB=AC,DE=CD,
∴,且∠BAC=∠EDC=120°,
∴△ABC∽△DEC,
∴,且∠ACD=∠BCE,
∴△ACD∽△BCE,
∴,
∴的值有没有改变
②(i)如图,当B、D、E在同一直线上,且点D在BE中间时,过点C作CN⊥BE于N,
∵AC=AB=1,
∴由(1)可知,BC=,
∵∠CDE=120°,
∴∠BDC=60°,且CD=DE=,CN⊥BE,
∴DN=CD=,CN==,
∴EC=2CN=,
∵BN=,
∴BE=,
∵,
∴AD=,
(ii)如图,当 B、D、E在同一直线上,且点B在ED中间时,过点B作BH⊥EC于H,
∵∠BEC=30°,BH⊥EC,
∴BE=2BH,EH=,
∵BC2=BH2+HC2,
∴3=BH2+ ,
∴BH=,
∴BE=
∵
∴AD=.
综上所述,线段AD的长为或.
【题目】为了了解学生对“预防新型冠状病毒”知识的掌握情况,学校组织了一次线上知识培训,培训结束后进行测试,在全校2000名学生中,分别抽取了男生,女生各15份成绩,整理分析过程如下,请补充完整.
(收集数据)
15名男生测试成绩统计如下:(满分100分)78,90,99,93,92,95,94,100,90,85,86,95,75,88,90
15名女生测试成绩统计如下:(满分100分)77,82,83,86,90,90,92,91,93,92,92,92,92,98,100
(整理、描述数据)
70.5~75.5 | 75.5~80.5 | 80.5~85.5 | 85.5~90.5 | 90.5~95.5 | 95.5~100.5 | |
男生 | 1 | 1 | 1 | 5 | 5 | 2 |
女生 | 0 | 1 | 2 | 3 | 7 | 2 |
(分析数据)
(1)两组样本数据的平均数、众数、中位数、方差如下表所示:
性别 | 平均数 | 众数 | 中位数 | 方差 |
男生 | 90 | 90 | 90 | 44.9 |
女生 | 90 | 32.8 |
在表中:________.________;
(2)若规定得分在80分以上(不含80分)为合格,请估计全校学生中“预防新型冠状病毒”知识测试合格的学生有多少人?
(3)通过数据分析得到的结论,你认为男生和女生中谁的成绩比较好?请说明理由.