题目内容
如图,⊙O是△ABC的外接圆,AD是△ABC的高,AE是⊙O的直径,求证:∠BAE=∠CAD.
证明:连接BE,
∵AE是⊙O的直径,
∴∠ABE=90°.
∴∠BAE+∠E=90°.
∵AD是△ABCBC边上的高,
∴∠ADC=90°.
∴∠CAD+∠ACB=90°.
∵∠E=∠ACB,
∴∠BAE=∠CAD.
∵AE是⊙O的直径,
∴∠ABE=90°.
∴∠BAE+∠E=90°.
∵AD是△ABCBC边上的高,
∴∠ADC=90°.
∴∠CAD+∠ACB=90°.
∵∠E=∠ACB,
∴∠BAE=∠CAD.
练习册系列答案
相关题目