题目内容
如图,BC是直径,AD=DC,∠ADB=20°,∠ACB=______,∠DBC=______.
∵
=
,
∴∠ADB=∠ACB(同弧所对圆周角相等),
∵∠ADB=20°,
∴∠ACB=20°,
∵BC是直径,
∴∠BDC=90°(直径所对圆周角等于90°),
∵AD=DC,
∴
=
,
∴∠DBC=∠DCA(等弧所对圆周角相等),
∵∠ACB=20°,
∵∠BDC=∠DBC+∠DCB=90°,
∴∠DBC+∠DCA=∠DBC+∠DCB-∠ACB=90°-20°=70°,
∴∠DBC=∠DCA=35°.
故答案为:20°,35°.
AB |
AB |
∴∠ADB=∠ACB(同弧所对圆周角相等),
∵∠ADB=20°,
∴∠ACB=20°,
∵BC是直径,
∴∠BDC=90°(直径所对圆周角等于90°),
∵AD=DC,
∴
AD |
CD |
∴∠DBC=∠DCA(等弧所对圆周角相等),
∵∠ACB=20°,
∵∠BDC=∠DBC+∠DCB=90°,
∴∠DBC+∠DCA=∠DBC+∠DCB-∠ACB=90°-20°=70°,
∴∠DBC=∠DCA=35°.
故答案为:20°,35°.
练习册系列答案
相关题目