题目内容
如图,点A、B、C、D都在⊙O上,OC⊥AB,∠ADC=30°.
(1)求∠BOC的度数;
(2)求证:四边形AOBC是菱形.
(1)求∠BOC的度数;
(2)求证:四边形AOBC是菱形.
(1)∵点A、B、C、D都在⊙O上,OC⊥AB,
∴
=
,
∵∠ADC=30°,
∴∠AOC=∠BOC=2∠ADC=60°,
∴∠BOC的度数为60°;
(2)证明:∵
=
,
∴AC=BC,
AO=BO,
∵∠BOC的度数为60°,
∴△BOC为等边三角形,
∴BC=BO=CO,
∴AO=BO=AC=BC,
∴四边形AOBC是菱形.
∴
AC |
BC |
∵∠ADC=30°,
∴∠AOC=∠BOC=2∠ADC=60°,
∴∠BOC的度数为60°;
(2)证明:∵
AC |
BC |
∴AC=BC,
AO=BO,
∵∠BOC的度数为60°,
∴△BOC为等边三角形,
∴BC=BO=CO,
∴AO=BO=AC=BC,
∴四边形AOBC是菱形.
练习册系列答案
相关题目