题目内容

【题目】在菱形ABCD中,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.

(1)若E是线段AC的中点,如图1,易证:BE=EF(不需证明);
(2)若E是线段AC或AC延长线上的任意一点,其它条件不变,如图2、图3,线段BE,EF有怎样的数量关系,直接写出你的猜想;并选择一种情况给予证明.

【答案】
(1)证明:∵四边形ABCD为菱形,

∴AB=BC,

又∵∠ABC=60°,

∴△ABC是等边三角形,

∵E是线段AC的中点,

∴∠CBE= ∠ABC=30°,AE=CE,

∵AE=CF,

∴CE=CF,

∴∠F=∠CEF,

∵∠F+∠CEF=∠ACB=60°,

∴∠F=30°,

∴∠CBE=∠F,

∴BE=EF


(2)证明:图2:BE=EF.

图2证明如下:过点E作EG∥BC,交AB于点G,

∵四边形ABCD为菱形,

∴AB=BC,

又∵∠ABC=60°,

∴△ABC是等边三角形,

∴AB=AC,∠ACB=60°,

又∵EG∥BC,

∴∠AGE=∠ABC=60°,

又∵∠BAC=60°,

∴△AGE是等边三角形,

∴AG=AE,

∴BG=CE,

又∵CF=AE,

∴GE=CF,

又∵∠BGE=∠ECF=120°,

∴△BGE≌△ECF(SAS),

∴BE=EF;

图3:BE=EF.

图3证明如下:过点E作EG∥BC交AB延长线于点G,

∵四边形ABCD为菱形,

∴AB=BC,

又∵∠ABC=60°,

∴△ABC是等边三角形,

∴AB=AC,∠ACB=60°,

又∵EG∥BC,

∴∠AGE=∠ABC=60°,

又∵∠BAC=60°,

∴△AGE是等边三角形,

∴AG=AE,

∴BG=CE,

又∵CF=AE,

∴GE=CF,

又∵∠BGE=∠ECF=60°,

∴△BGE≌△ECF(SAS),

∴BE=EF


【解析】(1)根据菱形的性质结合∠ABC=60°可得△ABC是等边三角形,再求得CE=CF,然后等边对等角的性质可得∠F=∠CEF,根据三角形的一个外角的性质求出∠F=30°,从而得到∠CBE=∠F,根据等角对等边的性质即可证得BE=EF;
(2)图2,通过作辅助线,根据菱形的性质可得△ABC是等边三角形,根据等边三角形的性质得到AG=AE,从而可以求出BG=CE,再根据等角的补角相等求出∠BGE=∠ECF=120°,然后利用“边角边”证明△BGE和△ECF 全等,根据全等三角形对应边相等即可得证BE=EF;
图3,证明思路与方法与图2完全相同.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网