题目内容

【题目】如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:

(1)∠CEB=∠CBE;
(2)四边形BCED是菱形

【答案】
(1)

证明:∵△ABC≌△ABD,

∴∠ABC=∠ABD,

∵CE∥BD,

∴∠CEB=∠DBE,

∴∠CEB=∠CBE.


(2)

证明:∵△ABC≌△ABD,

∴BC=BD,

∵∠CEB=∠CBE,

∴CE=CB,

∴CE=BD

∵CE∥BD,

∴四边形CEDB是平行四边形,

∵BC=BD,

∴四边形CEDB是菱形


【解析】(1)欲证明∠CEB=∠CBE,只要证明∠CEB=∠ABD,∠CBE=∠ABD即可.(2)先证明四边形CEDB是平行四边形,再根据BC=BD即可判定. 本题考查全等三角形的性质、菱形的判定、平行四边形的判定等知识,熟练掌握全等三角形的性质是解题的关键,记住平行四边形、菱形的判定方法,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网