题目内容
【题目】如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=1,AM=2,AE=.
(1)求证:BC是⊙O的切线;
(2)求⊙O的半径.
【答案】(1)见解析;(2)
【解析】
(1)欲证明BC是⊙O的切线,只需证明AB⊥BC即可;
(2)连接OM,设⊙O的半径是r,在Rt△AEM中,OE=AE﹣OA=﹣r,ME=1,OM=r,利用勾股定理即可求得.
(1)证明:∵在△AME中,AM=2,ME=1,AE=,
∴AM2=ME2+AE2,
∴△AME是直角三角形,
∴∠AEM=90°,
又∵MN∥BC,
∴∠ABC=90°,
∴AB⊥BC,
而AB为直径,
∴BC是⊙O的切线;
(2)解:连接OM,如图,设⊙O的半径是r,
在Rt△OEM中,OE=AE﹣OA=﹣r,ME=1,OM=r,
∵OM2=ME2+OE2,
∴r2=12+(﹣r)2,
解得r=,
即⊙O的半径为.
故答案为:(1)证明见解析;(2).
练习册系列答案
相关题目