题目内容
【题目】如图,旗杆AB的顶端B在夕阳的余辉下落在一个斜坡上的点D处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A处测得点D的仰角为15°,AC=10米,又测得∠BDA=45°.已知斜坡CD的坡度为i=1:,求旗杆AB的高度(≈1.7,结果精确到个位).
【答案】36米.
【解析】
试题分析:延长BD,AC交于点E,过点D作DF⊥AE于点F.构建Rt△DEF和Rt△CDF.通过解这两个直角三角形求得相关线段的长度即可.
试题解析:延长BD,AC交于点E,过点D作DF⊥AE于点F.
∵i=tan∠DCF==,
∴∠DCF=30°,
又∵∠DAC=15°,
∴∠ADC=15°,
∴CD=AC=10,
在Rt△DCF中,DF=CDsin30°=10×=5(米),
CF=CDcos30°=10×=,∠CDF=60°,
∴∠BDF=45°+15°+60°=120°,
∴∠E=120°﹣90°=30°,
在Rt△DFE中,EF==,
∴AE=10++=+10,
在Rt△BAE中,BA=AEtanE=(+10)×=30+≈36(米),
答:旗杆AB的高度约为36米.
练习册系列答案
相关题目
【题目】某服装点用6000购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.
类型 | A型 | B型 |
进价(元/件) | 60 | 100 |
标价(元/件) | 100 | 160 |
(1)求这两种服装各购进的件数;
(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?