题目内容
【题目】如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:
(1)当t=2时,判断△BPQ的形状,并说明理由;
(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;
(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ?
【答案】(1)△BPQ是等边三角形;(2)S=-t2+3t;(3)当t=时,△APR∽△PRQ.
【解析】
试题(1)当t=2时,分别求出BQ和BP的长度,然后进行说明;(2)过点Q作QE⊥AB,利用三角函数求出QE的长度,然后求出△BPQ与t之间的关系;(3)根据题意可得△CRQ为等边三角形,求出QR、BE、EP与t的关系可以得出四边形EPQR是平行四边形,然后进行计算.
试题解析:(1)△BPQ是等边三角形
当t=2时 AP=2×1=2,BQ=2×2=4
∴BP=AB﹣AP=6﹣2=4 ∴BQ=BP 又∵∠B=60°
∴△BPQ是等边三角形;
(2)过Q作QE⊥AB,垂足为E
由QB=2t,得QE=2tsin60°=t 由AP=t,得PB=6﹣t
∴S△BPQ=×BP×QE=(6﹣t)×t=﹣t
∴S=﹣t;
(3)∵QR∥BA ∴∠QRC=∠A=60°,∠RQC=∠B=60°
∴△QRC是等边三角形 ∴QR=RC=QC=6﹣2t
∵BE=BQcos60°=×2t=t
∴EP=AB﹣AP﹣BE=6﹣t﹣t=6﹣2t
∴EP∥QR,EP=QR ∴四边形EPRQ是平行四边形
∴PR=EQ=t 又∵∠PEQ=90°, ∴∠APR=∠PRQ=90° ∵△APR∽△PRQ,
∴∠QPR=∠A=60° ∴tan60°=即解得t=
∴当t=时,△APR∽△PRQ.