题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=6,Rt△AB'C'可以看作是由Rt△ABC绕点A逆时针方向旋转60°得到的,则线段B'C的长为______.
【答案】3
【解析】
作B′D⊥AC于D,构造直角三角形,利用旋转性质得AB′=AB=6,∠B′AB=60°,
所以,∠DAB′=180°-60°-60°=60°,在Rt△DAB′中,AD=AB′=3,B′D=AD=3,可得CD=DA+AC=6,根据勾股定理得B′C== 3.
作B′D⊥AC于D,如图,
∵∠ACB=90°,∠BAC=60°,AB=6,
∴AC=AB=3,
∵RtAB′C′可以看作是由Rt△ABC绕点A逆时针方向旋转60°得到的,
∴AB′=AB=6,∠B′AB=60°,
∴∠DAB′=180°-60°-60°=60°,
在Rt△DAB′中,∠DB′A=30°,AB′=6,
∴AD=AB′=3,B′D=AD=3,
∴CD=DA+AC=6,
在Rt△CDB′中,B′C== 3.
故答案为:3
练习册系列答案
相关题目